

Industrial Internet of Things **VET Network**

IIOTNET PROJECT

IIoT Body of Knowledge

WP4, Deliverable 4.2

Prepared by: IPS

October 2020

Contents

Introdu	uction	. 3
1.	Objectives	. 3
2.	Description of the blocks	. 3
2.1.	BLOCK 00 Business basics for the IIoT professional	. 4
2.2.	BLOCK 01: Essential System Characteristics for the IIoT	10
2.3.	BLOCK 02: Reference Architecture for the IIoT	16
2.4.	BLOCK 03: Connectivity in the IIoT	21
2.5.	BLOCK 04: Business Strategy and Innovation	26
2.6.	BLOCK 05: Security in the IIoT	31
2.7.	BLOCK 06: IIoT analytics	40

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Project Number: 609085-EPP-1-2019-1-BG-EPPKA3-VET-NETPAR 2

Introduction

This document sets out the core information that underpins the IIoT certification. Its purpose is to define the academic and professional knowledge that candidates, organisations and individuals must demonstrate to receive the IIoT certified status.

Each of these blocks describes the knowledge candidates are required to demonstrate, beginning with the most general information and progressing to the most specific level. There are recommended readings for each major area.

1. Objectives

The IIoT Body of Knowledge brings together as much relevant knowledge for professional development as possible in one place. It this sense, the IIoT Body of Knowledge as a certification programme defines the knowledge-base that IIoT professionals and practitioners need to be familiar with in order to do their jobs, and to enable them to attain this knowledge in a structured way. The certification programme defines the knowledge that candidates require in order to obtain the certification at both Basic and Advanced levels.

2. Description of the blocks

IIoT Body of Knowledge is structured in 7 blocks:

Blocks	Title
BLOCK 00	Basics for the IIoT professional
BLOCK 01	Essential System Characteristics for the IIoT
BLOCK 02	Reference Architecture for the IIoT
BLOCK 03	Connectivity in the IIoT
BLOCK 04	Business Strategy and Innovation
BLOCK 05	Security in the IIoT
BLOCK 06	IIoT analytics

Structure of IIoT Body of Knowledge

The progression from general to specific is broken down into blocks, topics and chapters. For example:

BLOCK 02: Reference Architecture for the IIoT

TOPIC 4. IIoT Business, Usage, Functional and Implementation Viewpoints

CHAPTER: Integration

The structure of the blocks follows the process of design and implementation of IIoT models in the enterprise, starting with Block 00, which covers the business basics for the IIoT professional.

BLOCK 00 Business basics for the IIoT professional 2.1.

Title	Business basics for the IIoT professional
Description	Block 00 prepares candidates for the remainder of the programme by reviewing and defining fundamental aspects of business management.
	The goal is to equip candidates with the essential tools they will require
	as they progress to more senior roles within their organisation.
Aim	The aim of this block is to enable applicants to map their existing knowledge and experience to the learning objectives of the IIoTNET certification. Block 00 covers the basic knowledge, skills and techniques that are pre-requisites for developing a career as an IIoT expert.
Input	Much of the input for this block will come from candidates' prior knowledge and experience.
Output	This introductory block will enable applicants to put their existing knowledge and skills in context, and to revise basic principles in readiness for completing the other blocks.
Topics	 Information technology Economics and International Business General Management Communication Business Ethics Business Strategy and Strategic Planning Effective Management Decision Making Risk Management Leadership Change Management

Topic 1 Information technology			
Chapter	Learning outcomes		
Basic IT	• Use of operating systems for file management, word processing,		
knowledge	spreadsheets, presentation software;		
	• Data analysis and use of internet communication tools.		

ICT infrastructure	•	Insights	into	structure	and	characteristics	of	computer
		infrastruc	cture su	uch as serve	rs and	clients, storage	and	networking
		equipme	nt.					

Topic 2 Economics and International Business			
Chapter	Learning outcomes		
Macroeconomics	Measuring national income;		
	Equilibrium in the economy.		
Macro dynamics	Inflation;		
	Economic growth;		
	Business cycles.		
International	Open macroeconomics;		
economy	Foreign exchange rate.		
Basics of	• Prices of goods and the quantities produced and consumed;		
managerial	 Government policies affecting prices and quantities; 		
economics	Efficient market outcomes;		
	• Types of competition.		

Topic 3 General Management			
Chapter	Learning outcomes		
Management	Business process management (BPM)		
policy and	Total quality management		
process	Continuous improvement process		
Introduction to	ICT strategy		
business	 IT architecture and the design and use of ICT systems 		
information	Enterprise resource planning (ERP) systems		
systems	Business intelligence		
Principles of	Human behavior in organizational setting;		
organisational	Individual and group behavior.		
behaviour			
Principles of	Basic knowledge of human resource management		
human resource			
management			

Topic 4 Communication		
Chapter	Learning outcomes	
The concept of	Communication channels;	
communication	• Forms and types of communication;	

	The role of the leader in ensuring communication;				
	Manager's social communicative competence;				
	Ethics in business communication;				
	Communication through technologies.				
Corporate	Internal communication;				
communication	• Ability to address the audience;				
	Meaningful visual communication;				
	• Media relations, investor relations, public relations;				
	How to build and protect corporate reputation;				
	Business reports;				
	Intercultural communication;				
	Methods for dealing with conflict.				
Communication	Crisis identification;				
in crisis	Crisis management;				
	Defining rules and responsibilities;				
	Communication training;				
	Crisis simulation.				
Communication	Digital and social media communication as a precondition for				
and negotiation in	responsible management of an innovative organization;				
a dynamic	Understanding and mastering strategies for interpersonal				
international	encounters, including conflict resolution, in multicultural				
environment	environments;				
	 Improving your global mind-set and negotiation skills. 				

Topic 5 Business Ethics				
Chapter	Learning outcomes			
Ethics in Business	Ethics, principles and moral values;			
	Social responsibility;			
	• Appreciation of ethical concerns both at local and global level.			
Business Ethics	 Creating understandable and accurate information; 			
Principles	• Ability to avoid conflicts of interest in professional relationships;			
	 Resolving ethical dilemmas and making ethical decisions. 			
Corporate Ethics	Influential factors on business ethics;			
	Code of Ethics and Code of Conduct;			
	Ethical leadership.			

Topic 6 Business strategy and strategic planning		
Chapter	Learning outcomes	

Introduction to	 Planning and developing a strategy; 		
strategic planning	Business goals and objectives;		
	• Financial considerations to be taken into account.		
Organizational	Vision and mission;		
analysis	• Structure of the organization and the business activity;		
	Required resources.		
External	STEEPLE analysis;		
environment	 Impact of technology; 		
	Growths and evolution;		
Implementation	Implementation checklist;		
and evaluation of	Communication plan;		
the strategy • Team for evaluation and/or updating the strategy.			

Topic 7 Effective N	lanagement Decision Making
Chapter	Learning outcomes
Identifying	Effective communication;
problem	• Assessing the scope and the nature of the problem to be resolved.
Gathering	Data sensing and collecting;
information	Sources of information.
Identifying	Mapping alternative paths;
alternatives	Weighing the evidence;
	Choosing among the alternatives.
Taking action	Analysis to action;
	Team involvement;
	Division of responsibility.
Reviewing and	Identifying if the action has succeeded .
adjusting	

Topic 8 Risk Manag	ement
Chapter	Learning outcomes
Identify the risks	• Types of risks;
	Identifying risk.
Analyse the Risk	• Map risks to different documents, policies, procedures, and
	business processes;
	Methods for risk analysis.
Evaluate or Rank	Methods of risk evaluation.
the Risk	
Treat the Risk	• Strategies to eliminating, containing as well as treating the risk.

Monitor and	Formalizing management process;
Review the Risk	Developing risk culture.
Risk Reduction	• Adjusting project plans, company processes and infrastructure.
Risk Sharing by	Customers;
different	• Vendors,;
departments	External organizations.

Topic 9. Leadership	
Chapter	Learning outcomes
Democratic	• Leader makes decisions based on the input of the team members;
Leadership	• Discussion about each option.
Strategic	 Intersection between a company's main operations;
Leadership	• Strategic thinking supports multiple types of employees at once.
Transformational	• Basic set of tasks and goals for a period of time;
Leadership	Deadlines for reaching them
Coach-Style	• Nurturing individual strengths of each member in the team;
Leadership	Similarities to strategic and democratic leadership.

Tropic 10. Change management		
Psychology of	• Principles for managing change;	
change	 Managing the people's side of change. 	
Change	Managing organisational change;	
management	Change management strategy;	
processes	Change management team.	
Managing change	Overcoming resistance;	
	Change management plan.	

Bibliography, Reading and learning Materials

Abdel-Basset, M., Manogaran, G., Mai, M., Rushdy, E., (2018) Internet of Things in Smart Education Environment: Supportive Framework in the Decision-making Process." Concurrency and Computation: Practice and Experience, vol. 31, no. 10, 4 May 2018. Retrieved from: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4515

Blanchard O. (2011). Macroeconomics (5th ed.). London, England: Prentice-Hall International. Gregory, A. (2020), 101 Small Business Marketing Ideas, Retrieved from: https://www.thebalancesmb.com/small-business-marketing-ideas-2951688

ITU (2020) Addressing Challenges for Teaching the Internet of Things." ITU News, 4 Feb. 2020. Retrieved from: https://news.itu.int/addressing-challenges-for-teaching-the-internet-ofthings/

Fombrun, Ch., (1996) Reputation: Realizing Value from the Corporate Image, Retrieved from: https://www.amazon.com/Reputation-Realizing-Value-Corporate-Image/dp/0875846335

Joshi, Μ. (2012). Essentials of marketing (eBook). Retrieved from: http://bookboon.com/en/essentials-of-marketing-ebook.

Mars, J., (2016) Communication Skills, Retrieved from: https://www.amazon.com/Great-Communication-Skills-Conversations-Relationships-ebook/dp/B01M2120G0

Klimsza, L. (2014) Business Ethics Introduction to the Ethics of Values, Retrieved from:

https://www.academia.edu/9943023/Lucjan Klimsza Business Ethics Introduction to the Ethics of Values

Kurzweil, D., Baker, S., (2016) The Internet of Things for Educators and Learners, Er.Educause.Edu, 8 Aug. 2016, Retrieved from: https://er.educause.edu/articles/2016/8/theinternet-of-things-for-educators-and-learners

Kusmin, M., (2019) Co-Designing the Kits of IoT Devices for Inquiry-Based Learning in STEM, Technologies, vol. 7, no. 1, 24 Jan. 2019, p. 16. Retrieved from: https://www.mdpi.com/2227-7080/7/1/16

McKean, D. (2012). IT strategy & technology innovation (eBook). Retrieved from http://bookboon.com/en/it-strategy-technology-innovation-ebook.

MDT Training. (2012). Advanced communication skills (eBook). Warwickshire, England: Author. Retrieved from: http://bookboon.com/en/advanced-communication-skills-ebook.

S. (2010). (eBook). Quinn, Management basics Retrieved from http://bookboon.com/en/management-basics-ebook.

Rooke, D., Torbert, W. (2005), Seven Transformations of Leadership, Retrieved from: https://hbr.org/2005/04/seven -transformations-of-leadership

BLOCK 01: Essential System Characteristics for the IIoT 2.2.

Title	Essential System Characteristics for the IIoT
Description	Block 01 presents key system characteristics for the Industrial Internet of
	Things (IIoT). The goal is to understand what are the main concerns for the
	IIoT. The block also looks at integration and compatibility issues
Aim	The aim of this block is to familiarize the applicants with system characteristics
	and interoperability issues within the IIoT.
Input	Much of the input for this block comes from candidates' prior knowledge on
	characteristics of the IIoT systems and experience of their developing and
	deployment.
Output	This block will enable applicants to extend their existing knowledge and skills
	in the essential system characteristics of the IIoT and be able to address
	important IIoT key system concerns during the deployment of an industrial
	system.
Topics	1. Purpose and scope
	2. Safety
	3. Resilience
	4. Integrability, Interoperability and composability
	5. Data Management
	6. Dynamic Composition and Automated Interoperability

Topic 1 Purpose and scope			
Chapter	Learning outcomes	Basic	Advanced
Purpose	Key system concerns in industrial internet systems	Х	Х
	Additional analysis to assist system architects		
Scope	Key concerns	Х	Х
	System concerns		
	Functional domains		

Topic 2 Safety			
Chapter	Learning outcomes	Basic	Advanced
Safety	Considering and defining safety	Х	Х
	Safety mechanisms		
	• Support for independent functional safety features		
	• Well-defined, verified and documented interfaces		
	Runtime monitoring and logging.		

Relationships	Role of reliability and resilience	Х
with other	Relationship between safety and security	
concerns	• Implications of dynamic composition and automated	
	interoperability for safety	

Topic 3 Resilience			
Chapter	Learning outcomes	Basic	Advanced
Resilience	Considering and defining resilience	Х	Х
	Coping with circumstances		
	autonomic computing notions		
Dependence	Mission planning;		Х
on resilience	• Situation awareness;		
	Resource management;		
	• Decide and assess.		
Approaches	• Disconnected from authority;		Х
and	 Importance of Peer-to-peer communication; 		
considerations	 Advantages of the hierarchical network; 		
	• Data and its transfer to information;		
	 Planning and preparation; 		
	Types of communication		

Topic 4 Integrability, Interoperability and composability			
Chapter	Learning outcomes	Basic	Advanced
Assembling	• Integrability,		Х
large systems	 Interoperability, 		
	Composability,		
	• Relation between composability, interoperability		
	and integrability.		
lloT systems	• Transformation from automatic to autonomous	Х	Х
and	Constraints and assumptions for components		
components	• Impose framework to complete integrability,		
	interoperability, and composability		
	Transform databases		
Use of natural	Information exchange with natural languages		Х
languages	World knowledge		
	Comprehend a context		

Topic 5 Data Ma	anagement		
Chapter	Learning outcomes	Basic	Advanced
Data	Reduction and Analytics	Х	Х
management	Publish and Subscribe		
	• Query		
	Storage, Persistence and Retrieval		
	Integration		
	Description and Presence		
	Data Framework		
	Rights Management		
Reduction and	Transmitting raw data over the networks		Х
Analytics	• Administer data by reducing the volume or velocity		
Publish and	Modern method for data exchange	Х	Х
Subscribe	Reliability, maintenance and resilience		
	Streaming data		
	Alarm and event		
	Command and control		
	Configuration		
	• Scalable		
	Application-level data consumption model		
	Reliable control flow		
Query	Models for queries		Х
	• The one-time query		
	The continuous query model		
	• Selection of a subset of device-generated data,		
	• Selective, usage-centric access to consolidated data		
Storage and	• Defining storage, persistence and retrieval	Х	Х
retrieval	 Preserving time-stamping information 		
	• Replay		
	Support for simulations		
	Reliability in storage		
Integration	Available integration mechanisms	Х	Х
	 Integration across middleware and applications 		
	Conventional ETL (Extract/Transform/Load)		
Metadata,	• Types, format, structure and metadata of system		Х
new data and	data		
models	Dynamic integration of application components		

	New data and communications		
	System management		
	New IIoT compositions		
Data	State and behavior	Х	Х
Framework	Diagnostic data, data update rates		
	Past and modern data frameworks		
	Data parameter monitoring		
	Traffic monitoring		
Data	Track data ownership		Х
ownership	Rights, access management, data protection		
	• Data stewardship,		
	Out-sourcing in clouds		
	Regulatory and compliance requirements.		

Topic 6 Dynamic	Topic 6 Dynamic Composition and Automated Interoperability				
Chapter	Learning outcomes	Basic	Advanced		
Dynamic	Service orientation	Х	Х		
composition	Dynamic integration of components				
	Situational awareness				
	Workload diversity				
	Complex relationships				
	Dynamic relationships.				
Considerations	Future capabilities	Х	Х		
	Models and implementation				
	Resources binding				
	 Virtually centralized policy control 				
	Service adaptability				
	Productivity				
Functional	Integration contract management	Х	Х		
components	Management of policies				
	Status monitoring				
	 Addition and removal of system components 				
	 Management of links between interfaces 				

Bibliography, Reading and learning Materials

Crowell, (2021) Introduction from: Ch., to loT, Retrieved https://www.amazon.com/dp/B0851LXQRY?tag=uuid10-20

Giacomo Veneri and Antonio Capasso (2018) Hands-On Industrial Internet of Things: Create a powerful Industrial ΙoΤ infrastructure using Industry 4.0, Retrieved from: https://www.amazon.co.uk/s?i=stripbooks&rh=p 27%3ACapasso%2C+Antonio& encoding=U TF8&ref=rdr ext aut

IIC (2018) The Industrial Internet of Things, Volume G2: Key System Concerns, Retrieved from: https://www.iiconsortium.org/pdf/Industrial Internet of Things Volume G2-Key System Concerns 2018 08 07.pdf

Jonathan Holdowsky, Monika Mahto, Michael E. Raynor, Mark Cotteleer (2015) Inside the Things Internet of (IoT), Deloitte University Press, Retrieved from: https://www2.deloitte.com/content/dam/insights/us/articles/iot-primer-iot-technologiesapplications/DUP 1102 InsideTheInternetOfThings.pdf

Kotsifakos, D., Makropoulos, G. Douligeriset, C., (2019) Teaching Internet of Things (IoT) in the Electronics Specialty of Vocational Education and Training, 4th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM). Retrieved from: https://www.semanticscholar.org/paper/Teaching-Internet-of-Things-(IoT)-in-the-Specialty-Kotsifakos-Makropoulos/20690e131029503f8d0ff0f53ae63e732da0c0e9

Marwedel, P. & Engel, M., 2016. Cyber-Physical Systems: Opportunities, Challenges and (Some) Solutions. In Springer International Publishing, pp. 1–30. Retrieved from: http://link.springer.com/10.1007/978-3-319-26869-9 1

McFarlane, D. (2018) Industrial Internet of Things. Applying IoT in the Industrial Context, EPSRC, of Cambridge, Retrieved from: University https://connectedeverythingmedia.files.wordpress.com/2018/10/industrial-internet-ofthings.pdf

Misra, S., Roy, Ch., Mukherjee, A., (2021) Introduction to Industrial Internet of Things and Industry 4.0 Retrieved from: <u>https://www.routledge.com/Introduction-to-Industrial-Internet-</u> of-Things-and-Industry-40/Misra-Roy-Mukherjee/p/book/9780367897581

Ryane Bohm (2018) Industrial Internet of Things for Developers, John Wiley & Sons, Retrieved from: https://www.ge.com/digital/sites/default/files/download assets/GE-Industrial-Internetof-Things-for-Developers.pdf

Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, opportunities, and directions. IEEE Trans. Ind. Inform. 2018, 14, 4724-4734, Retrieved from:

https://www.researchgate.net/publication/326133188 Industrial Internet of Things Challe nges Opportunities and Directions

Zurawski, R. (2018) The Industrial Information Technology Handbook; CRC Press: London, Retrieved from: <u>https://www.taylorfrancis.com/books/industrial-information-technology-handbook-richard-zurawski/10.1201/9781315220758</u>

BLOCK 02: Reference Architecture for the IIoT 2.3.

Title	Reference Architecture for the IIoT			
Description	Block 02 looks at the basic concepts and framework of Reference			
	architectures for the IIoT. The goal is to present the candidates with the			
	vocabulary and the standard-based frameworks, used for the description			
	of business, usage, functional and implementation points of view in terms			
	of a reference architectures.			
Aim	The aim of this block is to give the applicants basic terms, knowledge and			
	techniques and to make them understand the differences between			
	business, usage, functional and implementation points of view.			
Input	There is no need for prior knowledge on this topic.			
Output	This block will enable applicants to understand the basic principles of			
	creation and development of a reference architecture for the IIoT.			
Topics	1. Purpose and scope			
	2. IIoT Reference Architecture Concepts			
	3. IIoT Architecture Framework			
	4. IIoT Business, Usage, Functional and Implementation Viewpoints			
	5. Example patterns of IIoT implementation			

Topic 1 Purpose and scope				
Chapter	Learning outcomes	Basic	Advanced	
Purpose	 Foundational framework for all other technical documents. Reference architecture and why is it important. Understanding concepts of reference architecture 	Х	Х	
Scope	• The Industrial Internet Architecture Framework (IIAF) and the Industrial Internet Reference Architecture (IIRA)		Х	

Topic 2 IIoT Reference Architecture Concepts				
Chapter	Learning outcomes	Basic	Advanced	
Main concepts	• Definition and example of a reference architecture	Х	Х	
	A common vocabulary			
Reference	Broad industry applicability	Х	Х	
architecture	Generic and at a high level of abstraction			
for IIoT	 Allowing refinement and revisions 			
	Identifying technology gaps			

Topic 3 IIoT Architecture Framework			
Chapter	Learning outcomes	Basic	Advanced
Industrial	• Conventions, principles and practices for	Х	Х
Internet	description of IIoT architecture		
Architecture	Terms and concepts		
Framework –	• Architecture frame, architecture representations		
terms and	• Viewpoints, stakeholders, model kinds		
concepts			
System	 Identification and evaluation of concerns 		Х
architecture	Models of a representation		
	Developing system architecture		

Topic 4 Ilo	Topic 4IIoT Business, Usage, Functional and Implementation Viewpoints			
Chapter	Learning outcomes	Basic	Advanced	
Business	Concerns of stakeholders	Х	Х	
viewpoint	 Business vision, values and objectives 			
	• Return on investment, cost of maintenance and			
	product liability			
	 Achievement of the stated objectives. 			
Usage	Human activities delivering functionality	Х	Х	
viewpoint	• Implementation of key capabilities by IIoT systems			
	 Activities of various units in regard to users 			
Functional	Functional components	Х	Х	
viewpoint	Structure and interrelation			
	 Interfaces and interactions 			
	 Support of activities in the system 			
Implementation	Technologies		Х	
viewpoint	Communication schemes			
	Lifecycle procedures			
	Price and timing issues			
	Issues on market focus			
	Regulation and compliances			
Integration	• Integration of business, usage, functional and		Х	
	implementation levels			
	Revisions due to analysis			
	 Inclusion of system concerns safety and security 			

Topic 5Example patterns of IIoT implementation				
Chapter	Learning outcomes	Basic	Advanced	
Established	Popular IIoT system implementations	Х	Х	
architectural	Three-tier architecture pattern			
patterns	Gateway-Mediated Edge Connectivity			
	Management architecture pattern			
	Layered data bus pattern			
Three-Tier IIoT	Edge, platform and enterprise tiers		Х	
Architecture	• Roles of the tiers in data flow processing			
	Control of the tiers during usage			
Gateway-	Gateway-mediated edge connectivity		Х	
Mediated Edge	Management architecture			
Connectivity	Connection to Internet/WAN			
and	Need to reduce complexity			
Management				
Layered	Common architecture		Х	
Databus	Characteristics of the architecture/pattern			
pattern	Best usage cases			
	Most popular applications			

Bibliography, Reading and learning Materials

Giordano, A., Spezzano, G. & Vinci, A., 2016. A Smart Platform for Large-Scale Cyber-Physical Systems. In Springer International Publishing, pp. 115-134. Retrieved from http://link.springer.com/10.1007/978-3-319-26869-9_6

Hersent, O., Boswarthick, D., Elloumi, O., (2012) The Internet of Things: Key Applications and Protocols, 2 nd Edition, Willy Publications, Retrieved from: https://www.wiley.com/enus/The+Internet+of+Things%3A+Key+Applications+and+Protocols%2C+2nd+Edition-p-9781119994350

IIC (2019) The Industrial Internet, Volume G1: Reference Architecture Technical Report, version 1.9, Retrieved from: http://www.iiconsortium.org/IIRA.htm

International Organization for Standardization: ISO/IEC 2382:2015: Information technology— Vocabulary, 2015-May, Retrieved FROM: https://www.iso.org/standard/63598.html

International Organization for Standardization: ISO/IEC 9798-1:2010: Information technology— Security techniques—Entity authentication—Part 1: General, 2010-July, retrieved 2017-05-29 https://www.iso.org/standard/53634.html

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Project Number: 609085-EPP-1-2019-1-BG-EPPKA3-**VET-NETPAR** 18

IVI, I.V.C.I., (2018) Industrial Value Chain Reference Architecture-Next, Hannover, Germany. Retrieved from: https://iv-i.org/wp/wp-content/uploads/2018/04/IVRA-Next_en.pdf

Lee, J., Bagheri, B. & Kao, H.A., 2015. A Cyber-Physical Systems architecture for Industry 4.0based manufacturing systems, Retrieved from: http://www.sciencedirect.com/science/article/pii/S221384631400025X

Lishev, S., Popov, R., Georgiev, A., Laboratory SCADA Systems - the State of Art and the Challenges, BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Retrieved from: http://e-university.tu-sofia.bg/e-publ/files/2458 Vol3 No3 20015 164-170.pdf

Minoli, D., (2013) Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Willy Publications, Retrieved from: https://www.wiley.com/enus/Building+the+Internet+of+Things+with+IPv6+and+MIPv6%3A+The+Evolving+World+of+M2 M+Communications-p-9781118473474

Nath, S., Stackowiak, R., Romano, C., (2017) Architecting the Industrial Internet, Packt Publ., Birmingham,

https://books.google.bg/books?id=8plGDwAAQBAJ&printsec=frontcover&hl=bg#v=onepage& q&f=false

Petruzella, F., (2021) Programmable Logic Controllers, 5th edition, McGraw-Hill Education, ebook, Retrieved from: https://www.amazon.com/Programmable-Logic-Controllers-Frank-Petruzella/dp/0073373842

Radanliev, P., De Roure, D., Nicolescu, R., Huth, M., (2019) A reference architecture for integrating the Industrial Internet of Things in the Industry 4.0, Working paper, University of Oxford, Retrieved from https://www.researchgate.net/publication/331650642 A reference architecture for integr ating the Industrial Internet of Things in the Industry 40

Roland Berger Focus (2017) Mastering Industrial Internet of Things, Retrived from: https://www.rolandberger.com/de/Insights/Publications/Mastering-the-Industrial-Internetof-Things-(IIoT).html

Rohen, M. (2019) IoT EU Strategy, State of Play and Future Perspectives, European Commission, Retrieved Belgium, from: https://www.riverpublishers.com/pdf/ebook/chapter/RP 9788770220071C1.pdf

Saqlain, M., Piao, M., Shim, Y., Lee, J., (2019 Framework of an IoT-based Industrial Data Management for Smart Manufacturing, Journal of Sensor and Actuator Networks Retrieved from: https://www.mdpi.com/2224-2708/8/2/25

Uckelmann, D., Harrison, M., Michahelles, F. (2011) Architecting the Internet of Things, Springer, Retrieved from: <u>https://www.springer.com/gp/book/9783642191565</u>

BLOCK 03: Connectivity in the IIoT 2.4.

Title	Connectivity in the IIoT			
Description	Block 03 prepares candidates for the understanding of the connectivity in			
	IIoT. It provides the ability to exchange data between participants within			
	and across functional domains (control, operations, information,			
	applications, business).			
Aim	The aim of this block is to help the applicants to understand the IIoT			
	connectivity issues, to get acquainted with the stack model, to evaluate and			
	determine the suitability of a connectivity technology for a particular			
	system.			
Input	Much of the input for this block will come from candidates' prior			
	knowledge of communication technologies and protocols.			
Output	This block will enable applicants to understand the basic data-sharing			
	mechanisms to support the higher-level functions.			
Topics	1. Purpose and scope			
	5. Stack model and architectural qualities			
	6. Connectivity standards and challenges			
	7. Connectivity functions and considerations			
	5. Transport layer			
	6. Assessing connectivity			
	7. Connectivity Standards			

Topic 1 Purpose and scope			
Chapter	Learning outcomes	Basic	Advanced
Purpose	• The goal of understanding the IIoT connectivity is to allow data exchange in isolated systems, enabling data sharing and interoperability between components and subsystems.	Х	Х
Scope	• There is a wide spectrum of data models and functions specific to a particular industry, bellow which is the "internet" network layer, common across industries.	Х	Х

Topic 2Stack model and architectural qualities				
Chapter Learning outcomes Basic Advanced			Advanced	
Connectivity	• In the IIoT Connectivity Stack Model each layer is built	Х	Х	
Stack Model	over the layer below. The layers are: Framework,			
	Transport, Network, Link and Physical			

Architectural	•	Performance	Х	Х
qualities	•	Scalability		
	•	Reliability		
	•	Resilience		
	•	Security		
	•	Integration		
	•	Interoperability		
	•	Safety		

Topic 3	Connectivity standards and challenges		
Chapter	Learning outcomes	Basic	Advanced
Connectivity	• New connectivity technologies - to be integrated with	Х	Х
standards	existing technologies, use of gateways		
	• LPWAN, NB-IoT, LTE-M, 5G, Wi-Fi 6, Bluetooth 5		
Connectivity challenges	 A connectivity technology can be universal but also can be suited to a particular application area. Multiple connectivity technologies might be needed. No single connectivity standard across all domains for all industries. 	X	X

Topic 4	Connectivity functions and considerations		
Chapter	Learning outcomes	Basic	Advanced
Connectivit	Key connectivity framework functions:	Х	Х
y functions	o data resource model,		
	\circ publish-subscribe and request-reply data		
	exchange patterns,		
	 data quality of service, 		
	\circ data security, and		
	o programming API.		
	• Other functions and communication issues:		
	 Data resource model (data objects) 		
	o Addressing		
	o Data type		
	 Data resource lifecycle 		
	 Exception handling 		
Considerati	Choosing a connectivity framework:	Х	Х
ons	 System (peer-to-peer or broker), 		

0	Data (data-centric or device/app-centric),	
0	Performance (real time or batch),	
0	Scalability (data objects or applications),	
0	Availability (redundancy and recovery),	
0	deployment,	
0	operational considerations.	
• The trac	deoffs in each should be carefully evaluated.	

Topic 5 Transport layer			
Chapter	Learning outcomes	Basic	Advanced
Functions of	• Endpoint addressing (the messaging protocol),	Х	Х
transport	• Modes of communication (unicast, etc.),		
	• Connection-oriented or connectionless,		
	• Critical or non-critical data,		
	Timing and synchronization		
	Message security.		
Network layer	• Topology	Х	Х
considerations	• Span		
	Segmentation		

Topic 6 Assessi	Topic 6 Assessing connectivity			
Chapter	Learning outcomes	Basic	Advanced	
Business	Origin of the connecting system	Х	Х	
viewpoint	Options and variants			
	• Maturity and the state of development of the technology			
	Stability of the technology			
	• Standards/organizational bodies behind it, open			
	standard or not			
Usage	Main concepts, architecture, and terminology	Х	Х	
viewpoint	Technology options			
	Applications			
	Operation			
	• Security			
	Safety (certified or not)			
	Gateways (are there)			

Functional	Data resource model	Х	Х
viewpoint	Addressing		
	Data type and data resource lifecycle		
	State management		
	Publish-subscribe		
	Request-reply		
	• Discovery		
	Exception handling		
	Quality of Service (QoS)		
	• Security		
	API and Governance		
Implementati	Peer-to-peer or broker	Х	Х
on viewpoint	Data-centric or device/application centric		
	Explicit or implicit governance		
	Data considerations		
	Performance considerations		
	Scalability considerations		
	Availability considerations		
	Deployment considerations		
	Network layer considerations		

Topic 7 Connect	Topic 7 Connectivity standards			
Chapter	Learning outcomes	Basic	Advanced	
Connectivity framework standards	 Data distribution service (DDS) Hypertext Transfer Protocol (HTTP) OPC Unified Architecture One M2M UDP and TCP transport Constrained Application Protocol (CoAP) MQTT Fieldbus protocols –Profibus (Profinet), EtherNet/IP, Modbus & Modbus/TCP, HART & HART wireless Each has its vendors and customers 	X	X	

Bibliography, Reading and learning Materials

Gomez, Ch., Chessa, St., Fleury, A., Roussos, G., Preuveneers, D., (2019) Internet of Things for enabling smart environments: A technology-centric perspective, Journal of Ambient Intelligence and Smart Environments, vol. 11, no. 1, pp. 23-43, Retrieved from: https://content.iospress.com/articles/journal-of-ambient-intelligence-and-smartenvironments/ais180509

IIC (2019). The Industrial Internet of Things Volume G5: Connectivity Framework, Retrieved from: http://www.iiconsortium.org/pdf/IIC_PUB_G5_V1.0_PB_20170228.pdf

IIC (2019) The Industrial Internet, Volume G8: Vocabulary Technical Report, version 2.2, Retrieved from: http://www.iiconsortium.org/vocab/index.htm

Keysight (2021) U3800 Series: ΙoΤ Applied Courseware, Retrieved from https://www.keysight.com/main/campaign.jspx?cc=BG&lc=eng&ckey=2831559&nid=-31913.1203055&id=2831559

OASIS (2020) MQTT protocol: The Standard for IoT Messaging, Retrieved from http://www.mqtt.org

OneM2M (2020) Standards for M2M and the Internet of Things, Retrieved from: http://www.oneM2M.org

OPC Foundation (2021) OPC Unified Architecture, Retrieved from: https://opcfoundation.org/about/opc-technologies/opc-ua/

Tolk, A., Saikou, D., Turnitsa, Ch., (2007) Applying the Levels of Conceptual Interoperability Model in Support of Integrability, Interoperability, and Composability for System-of-Systems Engineering, Journal of Systems, Cybernetics and Informatics, Retrieved from: http://www.iiisci.org/journal/cv\$/sci/pdfs/p468106.pdf

Samih, H., (2019) Smart cities and internet of things, Journal of Information Technology Case from: and Application Research, 21:1, 3-12, Retrieved https://doi.org/10.1080/15228053.2019.1587572

Vermesan, O., Bacquet, J., (2018) Next Generation Internet of Things Distributed Intelligence at the Edge and Human Machine-to-Machine Cooperation, River Publishers, Retrieved from: https://www.riverpublishers.com/research_details.php?book_id=690

Weyer, S. et al., 2015. Towards Industry 4.0 - Standardization as the crucial challenge for highly modular, multivendor production systems. IFAC-PapersOnLine, 48(3), pp.579–584. Retrieved from: http://linkinghub.elsevier.com/retrieve/pii/S2405896315003821

BLOCK 04: Business Strategy and Innovation 2.5.

Title	Business Strategy and Innovation
Description	Block 04 introduces the market context of the opportunities in the IIoT to
	develop business, creating innovations. The block presents a way to draw
	strategies that can help a business model, following the best practices and
	using the proper platforms.
Aim	The aim of this block is to look at the business models for the IIoT, and also
	at opportunities for development and production, and to get acquainted
	with the business models tools and ways to evaluate the business cases.
	Another aim is to carry out an impact and risk assessment.
Input	Much of the input for this block will come from candidates' prior
	knowledge on marketing, business models and innovation.
Output	This block will enable applicants to put their existing knowledge and skills
	in the context of the IIoT and innovations and will be able to identify and
	apply the best practices in the IIoT for business models, assessment and
	governance.
Topics	1. Purpose and scope
	2. Market Context
	3. IIoT Strategy
	4. IIoT Business model innovation
	5. IIoT Best practices and platforms

Topic 1. Purpose	Topic 1. Purpose and scope				
Chapter	Learning outcomes	Basic	Advanced		
Purpose	 Framework for enterprise planning, using the IIoT concepts; Accelerate decisions to deploy the IIoT technologies. 	X	X		
Scope	 Creating a detailed document that analyzes major business strategy for greater insight into topics; Highlight steps for organizations considering deploying the IIoT initiatives. 	Х	X		

Topic 2.	Market Context		
Chapter	Learning outcomes	Basic Advanced	1

Opportunity for the lloT	 Access to new and unified data requires a platform for improved decision-making by humans and machines; A basis for more comprehensive business monitoring, insight and control, while increasing efficiency; Look at the internal and external business factors aiming at the IIoT adoption; Look at the influence and society impact; 	X	X
Transform business models with IIoT	 IIoT transforms business models in all markets; General business model and market transformation; Unification of disparate business elements; Enhanced development and production; Increasing customer value. 		Х
Integrating data from information technology (IT) and operational technology (OT)	 Collaboration and cross-linkage between IT and OT; Making informed and integrated business and operational decisions on the basis of all data. 		Х

Topic 3. Industrial IoT Strategy			
Chapter	Learning outcomes	Basic	Advanced
Defining the IIoT strategy for an enterprise before other activities	 The strategy reflects the extent to which the enterprise plans to shift toward IIoT and the speed of this shift The strategy must be important, wide ranging and beneficial the enterprise's management. 	Х	Х
Initiating the IIoT	 IIoT planning resembles the traditional planning and implementation approaches seen in IT and machine-to-machine (M2M) projects; Including the IIoT as an item on executive-level agendas. 	Х	X
Management of the IIoT portfolio	 IIoT project portfolio must support sales and marketing activities, and overall business management; 		Х

Identification, selection, and management for IIoT
opportunities;
Budgetary tracking and roadmap management for
lloT initiatives.

Topic 4. IIoT Busin	ness model innovation		
Chapter	Learning outcomes	Basic	Advanced
lloT business models	 Optimization measures and business model innovation; Investigating the shift from linear value chains to value creation within a network of stakeholders, both internal and external; 	X	Х
	• Follow a IIoT Business model builder;		
Concepts	 Unlocking a wide variety of benefits; Pursue cost and revenue optimization, operational efficiency, real-time business insight, new market and customer experience improvement, new services and societal improvements; Production optimization; New IIoT business models. 	X	X
Preparation	 Selected ideas should be analyzed and documented; Involve each of the contributing parties in the refinement of the planning cycle; Draw a value-creation network for an IIoT solution. 	X	X
Evaluation	 Business case calculation; Business case challenges; Impact and risk assessment. 	Х	Х
Initiation	 Internal organizational setup; Entering in arrangements of third party companies. 		X

Topic 5. IIoT Best practices and platforms			
Chapter	Learning outcomes	Basic	Advanced

lloT Center of	• Create and govern a unified IIoT strategy within	Х	Х
Excellence (CoE)	the organization;		
	 Identifying and applying best practices; 		
	Enabling change management;		
	 Rethinking business models; 		
	Managing human resources;		
	IIoT maturity assessment;		
	IloT governance.		
Industrial IoT	• Identifying platform support requirements of an	Х	Х
platform	IIoT solution;		
	Define service groups;		
	• Inventory of the IIoT platform service functions;		
	 IIoT platform selection parameters; 		
	Standards in the IIoT.		

Bibliography, Reading and learning Materials

Angoso-Gonzalez, J., Betz Beylat, J., Gyorkos, J., Curley, M., Pegman, G., Helberger, N., Lehrmann-Madsen, O., (2014) Internet of Things – The next revolution. A strategic reflection about an European approach to Internet of Things,. Retrieved from: http://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetailDoc&id= 17867&no=1

Bilgeri, D., Brandt, V., Lang, M., Tesch, J., Weinberger, M., (2015): IoT Business Model Builder, Bosch Software Innovations & the University of St. Gallen Retrieved from: https://www.iotlab.ch/wp-content/uploads/2015/10/Whitepaper IoT-Business-Model-Builder.pdf

Cepeda, R., Figueredo, K., (2016) New Service-provider and Business-model Disruption in the Industrial Internet of Things (IIoT), IIC Journal of Innovation, Retrieved from: https://www.iiconsortium.org/news/joi-articles/2016-June-New-Service-provider-and-Business-model-Disruption-in-the-Industrial-Internet-of-Things.pdf

Fleisch, E., Weinberger, M., Wortman, F., (2014): Business Models and the Internet of Things, Bosch Software Innovations & the University of St. Gallen Retrieved from: https://cocoa.ethz.ch/downloads/2014/10/2090 EN Bosch Lab White Paper GM im IOT 1 2.pdf

Guillemin, P., Berens, F., Carugi (2014) Internet of Things Global Standardisation - State of Play in Internet of Things- From Research and Innovation to Market Deployment; ed. V. Ovidiu & F.Peter. River Publishers Series, Retrieved from: https://www.researchgate.net/publication/263970385 Internet of Things -From Research and Innovation to Market Deployment Chapter 4 -Internet of Things Global Standardisation - State of Play

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Project Number: 609085-EPP-1-2019-1-BG-EPPKA3-**VET-NETPAR** 29

Hussain, F., (2017) Internet of Everything. In Internet of Things: Building Blocks and Business Models. Springer International Publishing, pp. 1-11. Retrieved from: http://link.springer.com/10.1007/978-3-319-55405-1 1

IIC (2016) The Industrial Internet of Things, Volume B01: Business Strategy and Innovation Framework, Retrieved from: https://www.iiconsortium.org/BSIF.htm

Kiel, D., Arnold, Ch., Voigt, K., (2017) The Influence of the Industrial Internet of Things on Business Models of Established Manufacturing Companies – A Business Level Perspective." Technovation, vol. 68, Dec. 2017, pp. 4–19, Retrieved from: https://ideas.repec.org/a/eee/techno/v68y2017icp4-19.html

Nicolescu, R. et al., (2018b) State of The Art in IoT - Beyond Economic Value, London. Retrieved from: https://iotuk.org.uk/wp-content/uploads/2018/08/State-of-the-Art-in-IoT---Beyond-Economic-Value2.pdf

Osterwalder, A., Pigneur, Y., (2010): Business Model Generation: A handbook for visionaries, game changers, and challengers. (1st ed.). Hoboken, NJ [etc.]: Wiley.

Sirris, M., Agoria, A., (2017). Made Different: Factory of the Future 4.0. Retrieved from: http://www.madedifferent.be/en/whatfactory-future-40

Shackelford, S., (2016) Protecting Intellectual Property and Privacy in the Digital Age: The Use of National Cybersecurity Strategies to Mitigate Cyber Risk. Chapman Law Review, 19. Retrieved from:

http://heinonline.org/HOL/Page?handle=hein.journals/chlr19&id=469&div=26&collection=jo urnals

SMeART (2019) University-Business Cooperation Model and Guidelines: Europe's SMEs to Meet the Challenges of Smart Engineering, Fachhochschule des Mittelstands (FHM), Retrieved from: http://www.smeart.eu/en/results/handbook-smeart/

Wortmann, F., Fluechter K., (2015) Internet of Things. Technology and Value Added, Business Information Systems Engineering 57(3):221-224, Retrieved from: https://core.ac.uk/download/pdf/301365199.pdf

BLOCK 05: Security in the IIoT 2.6.

Title	Security in IIoT
Description	Block 05 prepares candidates to understand approaches and tools for secure
	Industrial Internet of Things (IIoT) systems. The block presents the basic
	characteristics of a secure system, and a number of specific aspects.
Aim	The aim of this block is to give an overall knowledge and experience to the
	very complex issue of security. The protection of an IIoT system has to be
	handled in a structured way.
Input	Much of the input for this block will come from candidates' prior knowledge
	and experience of security and security management.
Output	This block will enable applicants to understand and possibly apply a
	cybersecurity model that provides a proper level of security for endpoints,
	devices and processes within an organization. The block provides knowledge
	on security techniques and processes, their relation to important security
	objectives, and high-level requirements.
Topics	1. Purpose and scope
	2. Essential System Characteristics
	3. Specific Aspects of Securing the IIoT
	4. Risk management and trust in the IIoT
	5. Protecting Endpoints
	6. Protecting Communications and Connectivity
	7. Security Monitoring and Analysis
	8. Security Configuration and Management

Topic 1 Purpos	Topic 1 Purpose, scope and structure		
Chapter	Learning outcomes	Basic	Advanced
Purpose	 Security-related architectures, designs and technologies; Procedures relevant to trustworthy Industrial Internet of Things (IIoT) systems; Security characteristics, technologies and techniques. 	Х	X
Scope	 Security framework Risks associated with security and privacy threats; Technologies and processes for risk management. 	Х	Х

Topic 2Essentia	l System Characteristics		
Chapter	Learning outcomes	Basic	Advanced

Defining	 Essential IIoT system characteristics; 	Х	Х
essential	• Properties of its various components and their		
system	interactions.		
characteristics			
Security	 Condition of the system being protected from unintended or unauthorized access, change or destruction; Secure behavior; Elements for security of information and system assets. 	X	X
Safety	 Safety as condition of the system; Safety-assessment techniques; Security analysis of the threat and threat-actor skills and capabilities. 	Х	X
Reliability	 Reliability of a system or component; Understanding of the operational environment, the system's composition; Establishing the likelihood of failure. 	Х	X
Resilience	 Resilience as a property of a system; Designing the system so that failures are compartmentalized. 	Х	X
Privacy	 Privacy as a right of an individual or group; Information protected or controlled from certain uses according to regulations and standards. 	Х	Х
Trustworthy systems	 Trustworthiness as a degree of confidence in system performs as expected; Importance of trustworthiness to each key system characteristic to a given deployment. 	Х	X

Topic 3 Specific Aspects of Securing the IIoT			
Chapter	Learning outcomes	Basic	Advanced
Converging Information Technologies (IT) and Operational Technologies (OT)	 IT as computer and communication systems common across industries; OT as a combination of hardware and software; IT and OT involving complex merge of their key system characteristics; Drivers and attitudes for convergence of IT and OT. 	Х	X

Security evolution in IT and OT	 IT-centric security; OT security and physical attacks; Control on "smart" appliances. 	X	X
Regulatory requirements and standards in IT and OT	 Regulatory requirements in the field of IIoT; External regulations that require compliance; Audit, assurance and compliance requirements on both OT and IT to cover IIoT; Standards that are not fragmented into IT and OT. 	Х	X
Cloud computing in IIoT	 Remote servers to store, manage and process data; Architecture and security of cloud computing; Communicating and storing data with a cloud system; Shared third-party services affecting security and privacy. 	Х	X
Implications for securing IIoT	 Regulatory constraints to OT and IT safety and security systems and equipment; Evaluation of attacks and threat models and security programs; IT and OT integrated into an evolving landscape of endpoint, communication, monitoring and management. 	Х	X

Topic 4 Ri	sk management and trust in the IIoT system		
Chapter	Learning outcomes	Basic	Advanced
Managing risk	 Safeguarding the investment in IIoT systems and protecting their operations from risk. Functions of Risk Management: Risk Avoidance, Risk Mitigation, Risk Transferal, Risk Acceptance and Residual risk. 	X	Х
Security programs	 Range of technologies and activities essential to a comprehensive, robust security posture; Essential program activities – Identify, Protect, Detect, Respond and Recover; Periodic risk assessment; Deployment of security solutions. 	Х	X
Risk assessments	 Process by which risk, including information security risk, is characterized Physical consequences of errors and attacks, information systems risk 		X

	 Security model and mitigating the impact of many unplanned situations; Identifying threats and consequences in the overall system and its implementation; Cyber threats and attack methods. 	
Communicating risk	 Communicating costs and benefits security risks and defensive postures to business decision makers; Methods for communicating risk: Quantitative, Qualitative, and Systematic risk assessment 	X
Metrics and Key Performance indicators	 Monitoring of reports on the security of IIoT systems during their life cycle Security metrics: detected attack attempts, the breakdown of those attempts, incidents, close calls, policy violations, anomalies that have merited investigation. Collecting metrics on remote terminal units and sensor outages; Setting up a continuous feedback loop to identify areas of risk, improve security effectiveness, demonstrate compliance and provide inputs for effective decision making. 	X

Topic 5 Protecting Endpoints			
Chapter	Learning outcomes	Basic	Advanced
Functional and implementation	• Providing end-to-end security from the edge to the cloud;	Х	Х
viewpoints	 Security implementation applied in multiple contexts; IIoT systems resources and requirements for safety and real-time execution. 		
Security building blocks	 Core security functions; Supporting functions; Endpoint protection on devices at the edge and in the cloud; Communications and connectivity protection implementing authentication and authorization of the traffic; 	Х	X

Protecting endpoints	 Security monitoring and analysis and controlled security configuration management for all components of the system; Security model and policy ensuring confidentiality, integrity and availability of the system throughout its lifecycle. Endpoints: edge devices, communications infrastructure, cloud servers or anything in between. Requirements and hardware constraints for each 	X	X
	endpoint;		
Communications and connectivity protection	 Functions of Endpoint Protection. Objectives: Physical security of the endpoint connectivity to the network, Protecting Information Flow in the Network, and Cryptographic Protection of communications between endpoints; Functions of Communication and connectivity security. 		X
Security monitoring and analysis	 Capturing data on the overall state of the system; Monitoring: Endpoints & Communications, Secure Remote Logging, and Supply Chain; Analyzing: Behavioral Analysis and Rule-Based Analysis Actions: Proactive/Predictive, Reactive detection & Recovery and Root Cause/Forensics 		Х
Security configuration and management	 Control of changes to operational functionality of the system and security controls ensuring its protection: Functions of Security configuration management. 		Х
Data protection	Types of data to protect;Data protection strategies.		Х
From functional to implementation viewpoint	Design principles of security capabilities: Economy of mechanism, Fail-safe defaults, Complete mediation, Open design, Separation of privilege, Least privilege, Least common mechanism, Psychological acceptability		Х

Topic 6 Protecting Communications and Connectivity			
Chapter	Learning outcomes	Basic	Advanced

Levels of protection	 Exchange of information among endpoints to facilitate component integration; Types of information exchanged; 	Х	X
	Cryptographic controls.		
Cryptographic protection of communication and connectivity	 Security controls in communication and connectivity protocols Information exchange among different actors within a system; Security controls and mechanisms for protecting communication links; Protecting exchanged content; Connectivity standards and security; Cryptographic protection for different communication and connectivity. 	X	Х
Information flow protection	 Information in motion; Network data isolation; Network segmentation; Gateways and filtering; Network firewalls; Unidirectional gateways; Network access control. 	X	Х
Security model and policies for protecting communications	 System components owned and deployed by one entity, but managed, maintained, or used by other entities; Allowed and prohibited relationships between subjects and objects; Communication & connectivity security policies; Defining and enforcing of security policies. 		Х

Topic 7 Security Monitoring and Analysis			
Chapter	Learning outcomes	Basic	Advanced
Monitoring	 Aggregating and storing data from running IIoT systems; Security analytic tools; Monitoring parameters; Monitoring related to the model of attack incidents and security and privacy policies; Monitored data. 	Х	Х

Incident prevention, detection, analysis and response	 Security analytics for actionable conclusions incorporated into automated incident response plans; Security analytics prior, during and after an incident. 	Х	X
Security monitoring and analytics	Purposes of security monitoring;Types of security analytics systems.		Х
Capturing and storing data for analysis	 Logging and event monitoring; Distinction between operational monitoring and security monitoring; Capturing and monitoring security data Sources of monitoring data. 		X
Security data protection	 Security policy and regulatory challenges for gathering, communicating and storing sensitive data for monitoring and analysis; Prohibited monitoring; Protecting sensitive data. 		Х
Special considerations for monitoring	Security model and privacy policy consideringGreenfield vs brownfield systems;Supply chain integrity monitoring		Х

Topic 8 Security Configuration and Management			
Chapter	Learning outcomes	Basic	Advanced
Managing changes	 Updates to policy, firmware and software; Periodic security compliance reports; Security objectives of the system to be managed. 	Х	Х
Secure operational management vs security management	 Operational management as configuration of the operational functionality of the system and its endpoints; Security management as security controls on an endpoint; Integrity and confidentiality of changes made to operational elements of the system. 	Х	X
Security communication channels	 Data channel and control channel with management as its sub-channel; The control channel enforcing policy on the data channel; 	Х	X

	• Security configuration channel and security monitoring channel.		
Secure operational management	 Configuring and controlling the IIoT system and its components; Trustworthiness of the system; Safety implications that traverse operational management systems. 	X	X
Security management	Security policy management;Policy authoring and definition;Policy assignment and delivery.	X	X
Endpoint configuration and management	 Activating and enforcing configured endpoint policy settings; Implementing new security controls; Secure software patching and firmware update. 		X
Communication configuration and management	 Security management and control of network communications; Applying policy at the communicating endpoints, or at intermediary communications devices. 		X
Identity management	 Attributes for identification; Identity management in endpoint security and its role for authentication and authorization; Standards and recommendations for identity management. 		X
Security model change control	 Lifecycle transitions over the lifetime of an endpoint; Changing security model for each endpoint depending on its lifecycle state; Enrollment and credential management phases of security model change control. 		X
Configuration and management data protection	 Security management maintains the consistency of security over time, and must not interfere with operational processes. Sharing security metadata with operation management systems; Security data conforming to the requirements of the specific network; Control of metadata updates to the management server. 		X
Security model and policy for	• Review of the security model and updates of organization policy hierarchy;		Х

change	Setting access rights to networks to match the
management	directives from the regulatory policy;
	Adjustments to machine policy for security control
	settings, configurations and security controls;
	Controlling and tracking policy updates with an
	audit trail.

Bibliography, Reading and learning Materials

European Union General Data Protection Regulation (GDPR), Retrieved from: https://eurlex.europa.eu/eli/reg/2016/679/oj

Baker McKenzie (2020) Global Data Privacy and Security Handbook, Retrieved from: https://www.bakermckenzie.com/en/insight/publications/2020/04/2020-global-data-privacyand-security-handbook

CSA (2011) CSA Security Guidance Version 3, Cloud Security Alliance, Retrieved from: http://www.cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf

CSCC (2021) Cloud Customer Architecture for IoT, Retrieved feom: http://www.cloudcouncil.org/deliverables/CSCC-Cloud-CustomerArchitecture-for-IoT.pdf

ENISA (2015) Security Framework for Governmental Clouds, European Union Agency for Network Information Security, Retrieved from: and http://www.enisa.europa.eu/publications/security-framework-forgovenmental-clouds

IIC (2016) The Industrial Internet, Volume G4: Security Framework Technical Report, version 1.0, Retrieved <u>http://www.iiconsortium.org/IISF.htm</u>

Kilman, D., Stamp, J., (2015) Framework for SCADA Security Policy, Sandia National Laboratories, Retrieved from: https://www.energy.gov/sites/prod/files/Framework%20for%20SCADA%20Security%20Policy. pdf

OASIS (2021) Advanced Message Queuing Protocol (AMQP), Retrieved from: https://www.oasis-open.org/committees/tc home.php?wg abbrev=amqp

Pal, Sh., Hitchens, M., Rabehaja, T., Mukhopadhyay, S., Security Requirements for the Internet of Things: А Systematic Approach, Sensors, MDPI, Retrieved from: http://www.mdpi.com/sesors-20-05897-(2).pdf

Ruan, K., (2017) Introducing cybernomics: A unifying economic framework for measuring cyber risk. Computers & Security, pp.77–89. Retrieved 65, from: http://www.sciencedirect.com/science/article/pii/S0167404816301407

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Project Number: 609085-EPP-1-2019-1-BG-EPPKA3-**VET-NETPAR** 39

2.7. BLOCK 06: IIoT analytics

Title	IIoT analytics				
Description	Block 06 gives understanding of the next-generation level of integration				
	and its practical outcomes for the end users. When applied to machine and				
	process data, the analytics provides new insights and intelligence to				
	optimize decision-making significantly and enable intelligent operations				
	leading to transformational business outcomes and social value. This block				
	is for the IIoT system architects and business leaders looking to successfully				
	deploy industrial analytic systems				
Aim	The aim of this block is to enable applicants to understand the				
	combinations of various fields like mathematics, computer science and				
	engineering, which are at the basics of analytics. The block covers the				
	business, usage, functional and implementation viewpoints of analytics,				
	issues like AI and Big Data, methods and modeling and characteristics and				
	functions related to analytics.				
Input	Much of the input for this block will come from candidates' prior				
	knowledge and experience of analytics tools and methods.				
Output	This block will enable applicants to enhance and improve their existing				
	knowledge and skills in the field of IIoT analytics				
Topics	1. Purpose and scope				
	2. Business Usage and Functional Viewpoints				
	3. Implementation Viewpoint				
	4. Artificial Intelligence and Big Data				
	5. Analytics Methods and Modeling				
	6. System Characteristics and Crosscutting Functions				

Topic 1 Purpose and scope of IIoT analytics			
Chapter	Learning outcomes	Basic	Advanced
Purpose	• Systematic analysis of IIoT systems;	Х	Х
	• Guidance and assistance in IIoT Analytics Systems;		
Scope	Concepts;	Х	Х
	 Components of analytical system; 		
	Characteristics;		
	Services in an industrial setting.		

Topic 2Business, Usage and Functional Viewpoints

Industrial Internet of Things VET Network

Chapter	Learning outcomes	Basic	Advanced
Business	Identification of stakeholders;	Х	Х
viewpoint and	• Their business vision, values and objectives;		
process	• Business and regulatory context;		
analytics	• Creating business value;		
	Performance bottlenecks;		
	• Meeting the demand from sales and profit		
	targets;		
	• Needed information;		
	Gathering data from machines;		
	Processes optimization.		
Strategic	• Data and analytical strategies;		Х
business	 Accountability for processes; 		
analytics	• System's operational states, performance and		
	environment;		
	• Identifying and analyzing emerging information		
	patterns;		
	• Industrial system assessments under varied		
	conditions.		
Analytic system	 Concerns of expected system usage; 	Х	Х
users	• Sequences of activities involving human or logical		
and their	users;		
viewpoint	 System's intended functionality; 		
	• Stakeholders involved in the specification of the		
	analytics system.		
Analytic users'	• Standards and innovations in sensor and		Х
relationships	computer technology, extending analytics to		
	machines across the globe;		
	• Analytics algorithms and techniques, including		
	machine learning;		
	• Analytics insights automatic application to		
	operational efficiency of machines.		

Functional	Functional components in industrial analytics system:	Х	Х
viewpoint	 Internal structure and interrelations; 		
	• Relation and interactions with external elements;		
	• Support the usages and activities of the overall		
	system		
	 Analytics objectives and constraints; 		
	• Five functional domains: control, operations,		
	information, application and business;		
	• Deploying industrial analytics functionality		
	throughout the IIoT architecture;		
	Capabilities needed for successful industrial		
	analytics solutions.		
Communication	• Presenting in a compelling and understandable		Х
of analytic	format;		
results	 Charts, graphs, and recommended actions; 		
	• Means for humans to interact with the results;		
	• Summary and drill down into the evidence		
	supporting recommendations.		

Topic 3 Impleme	entation Viewpoint		
Chapter	Learning outcomes	Basic	Advanced
Design considerations	 Technologies needed to implement functional components; Communication schemes; Lifecycle procedures; Scope of performing analytics; Response time and reliability; Bandwidth and Capacity; Security; Volume, velocity and variety; Temporal correlation; Compliance in terms of national security. 	Х	X
Analytics capacity considerations	 Functionality for industrial analytics; Information technology and elasticity to provide the required capacity; Elasticity as a degree to adapt to workload changes; 		X

	Capacity to avoid affecting profitability;	
	Operational technology ensuring determinism	
	with engineered capacity;	
	• Determinism as supporting computation and	
	transmission of data between connected devices	
	and applications within a predetermined time;	
	Response time for work request.	
Analytics	• Analytics deployed closer to the I/O at the edge;	Х
deployment	• Predictions deployed in the cloud;	
models	Types of analytics;	
	• Deploying analytics on monitoring devices;	
	• Process of deployment.	
Data pre-	• Data preparation of messy data;	Х
processing,	• Simplifying and clarifying data dimensions;	
transformation	• Time dimension in historical data;	
and curation	• Data transformation in machine learning to	
	simplify complexities.	

Topic 4 A	rtificial Intelligence and Big Data		
Chapter	Learning outcomes	Basic	Advanced
Big data analytics	 Cutting across information technology and operational technology, data and roles through Big data analytics; Computational systems and networks designed around the data. "5V" model of Big Data – volume, velocity, variability, veracity and variety. Features of machine and operational data; Big data application scenarios and purposes; Big data analytics functions; Multi-typed input data from a large quantity of sensors or machines; Types of queries and analyses for data mining; Requirements for analytics functions in an industrial environment. 	X	X

Artificial	Improving analysis efficiency and accuracy in X	
intelligence	industrial analytics through AI;	
(AI)	Analytics algorithms and frameworks used in IIoT;	
	Machine learning (ML) and Deep learning (DL);	
	Deploying a machine-learning model;	
	Supervised and unsupervised analytics methods	
	and algorithms;	
	Deep learning algorithms;	
	Deep learning and neural networks;	
	Training data for Deep-learning algorithms;	
	Convolutional and recurrent deep-learning	
	algorithms.	

Topic 5 Analytics Methods And Modeling			
Chapter	Learning outcomes	Basic	Advanced
Analytic methods and algorithms	 Streaming analytics responding to events in a timely manner; Managing large data throughput, latency, reliability and security; Batch analytics on available data; The lambda architecture as pattern in industrial analytics; Aggregating data sources in streaming analytics and complex event processing (CEP); Time windows are a common construct of stream processing and CEP; Preprocessing the data into a form that it can be analyzed; Analytics in the cloud and at the edge; Functions of master/batch/serving layer analytics; 		X
Analytics model building	 Collecting and preparing data; Selecting algorithms; Machine-learning algorithms; 		X
	• Data used to train the model;		

Comparing the performance of algorithms and
selecting the best one;
Cross-validation for testing the performance of a
model;
Performance metrics.

	Characteristics and Crosscutting Functions	Dacia	Advonced
Chapter	Learning outcomes	Basic	Advanced
Safety	 Dependencies and requirements for collection, storage, and communication of data to other parts of the industrial processes; Security expectations for authentication and authorization; Data management expectations for information models; Connectivity expectations for reliable data synchronization between the IIoT system tiers; Processing of industrial analytics results and confirming that they are in the expected range; Engaging a human in the loop to review anomalies. 	X	X
Security	 Concept of in-depth defense; Data management components encrypting sensitive data; Connectivity protocols performing the same functions for data-in-motion; Configuring security domains to protect and manage access to industrial analytics processes and data. 	X	X
Data management	 Static and dynamic characteristics of the IIoT assets tracked over time to gain insight; Collecting and storing data in their rawest form and tracking important anomalies; Asset types in industrial ecosystem; Semantics for meaningful information; Data origin as attribution of the data sources. 	X	X

Connectivity	The industrial internet as a distributed X X architecture by design;	
	 Producing raw data geographically separate from where the resulting information delivers business value; 	
	 Connectivity within a tier and across tiers of IIoT system; 	
	Local access to data and processing;	
	 Applications depending on resources across multiple tiers; 	
	Incorporate multiple vendors in a deployment;	
	Synchronizing the mechanisms for industrial	
	analytics components;	
	Response time within a tier and across tiers.	

Bibliography, Reading and learning Materials

Anandan, A., Suseendran, G., Pal, S., Zaman, N., (2021) Industrial Internet of Things (liot): Intelligent Analytics for Predictive Maintenance, Wiley-Scrivener, Retrieved from: https://www.goodreads.com/book/show/56296415-industrial-internet-of-things-iiot

Dagnino, A., (2021) Data Analytics in the Era of the Industrial Internet of Things, Springer International Publishing, Retrieved from: https://books.google.bg/books/about/Data Analytics in the Era of the Industr.html?id=NR jkzQEACAAJ&redir esc=y

IIC (2017) The Industrial Internet of Things Volume T3: Analytics Framework, , Retrieved from: https://www.iiconsortium.org/industrial-analytics.htm

ISO (2017) ISO 19941:2017: Information technology—Cloud computing—Interoperability and portability, Retrieved from https://www.iso.org/standard/66639.html

Kambatla, K., Kollias, G., Kumar, V. and Grama, A. (2014) Trends in Big Data Analytics. Journal of Parallel and Distributed 74, Computing, 2561-2573. https://doi.org/10.1016/j.jpdc.2014.01.003

Lade, P., Ghosh, R., Srinivasan, S., (2017) Manufacturing Analytics and Industrial Internet of 32(3):74-79, Things, Intelligent Systems, IEEE Retrieved from:

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Project Number: 609085-EPP-1-2019-1-BG-EPPKA3-**VET-NETPAR** 46

https://www.researchgate.net/publication/317161415 Manufacturing Analytics and Indust rial Internet of Things

Rehman, M., Yaqoob, I., Salah, K., Imran, M., Jayaraman, P., Perera, C., (2019) The role of big data analytics in Industrial Internet of Things. Future Generation Computer Systems, 99, 247-259, Retrieved from: https://arxiv.org/abs/1904.05556

Suhaib, M., (2019) Analysis of Big Data: Challenges and Fundamentals in the Computing System, Retrieved from: https://www.researchgate.net/publication/334222686 Analysis of Big Data Challenges an

d Fundamentals in the Computing System